Homework 6

1. RSA Assumption $(\mathbf{5}+\mathbf{1 2 + 5})$. Consider RSA encryption scheme with parameters $N=35=5 \times 7$.
(a) Compute $\varphi(N)$ and write down the set \mathbb{Z}_{N}^{*}.

Solution.
(b) Use repeated squaring and complete the rows X, X^{2}, X^{4} for all $X \in \mathbb{Z}_{N}^{*}$ as you have seen in the class (slides), that is, fill in the following table by adding as many columns as needed.

Solution.

X	1	2	3	4	6	8	9	11	12	13	16	17
X^{2}												
X^{4}												

X	18	19	22	23	24	26	27	29	31	32	33	34
X^{2}												
X^{4}												

(c) Find the row X^{5} and show that X^{5} is a bijection from \mathbb{Z}_{N}^{*} to \mathbb{Z}_{N}^{*}.

Solution.

X	1	2	3	4	6	8	9	11	12	13	16	17
X^{4}												
X^{5}												

X	18	19	22	23	24	26	27	29	31	32	33	34
X^{4}												
X^{5}												

2. Answer the following questions ($7+7+7+7$ points):
(a) (7 points) By hand, compute the three least significant (decimal) digits of $6251007^{1960404}$. Explain your logic.
Solution.
(b) (7 points) Is the following RSA signature scheme valid? (Justify your answer)

$$
(r \| m)=24, \sigma=196, N=1165, e=43
$$

Here, m denotes the message, r denotes the randomness used to sign m, and σ denotes the signature. Moreover, $(r \| m)$ denotes the concatenation of r and m. The signature algorithm $\operatorname{Sign}(m)$ returns $(r \| m)^{d} \bmod N$ where d is the inverse of e modulo $\varphi(N)$. The verification algorithm $\operatorname{Ver}(m, \sigma)$ returns $\left((r \| m)==\sigma^{e}\right.$ $\bmod N)$.

Solution.

(c) (7 points) Remember that in RSA encryption and signature schemes, $N=p \times q$ where p and q are two large primes. Show that in the RSA scheme (with public parameters N and e), if you know N and $\varphi(N)$, then you can efficiently factorize N, i.e., you can recover p and q.

Solution.

(d) (7 points) Consider an encryption scheme where $\operatorname{Enc}(m):=m^{e} \bmod N$ where e is a positive integer relatively prime to $\varphi(N)$ and $\operatorname{Dec}(c):=c^{d} \bmod N$ where d is the inverse of e modulo $\varphi(N)$. Show that in this encryption scheme, if you know the encryption of m_{1} and the encryption of m_{2}, then you can find the encryption of $\left(m_{1} \times m_{2}\right)^{5}$.

Solution.

(e) (7 points) Suppose $n=11413=101 \cdot 113$, where 101 and 113 are primes. Let $e_{1}=8765$ and $e_{2}=7653$.
i. (2 points) Only one of the two exponents e_{1}, e_{2} is a valid RSA encryption key, which one?
Solution.
ii. (3 points) For the valid encryption key, compute the corresponding decryption key d. Solution.
iii. (2 points) Decrypt the cipher text $c=3233$.

Solution.

3. Euler Phi Function (30 points)

(a) (10 points) Let $N=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}$ represent the unique prime factorization of a natural number N, where $p_{1}<p_{2}<\cdots<p_{t}$ are prime numbers and $e_{1}, e_{2}, \ldots, e_{t}$ are natural numbers. Let $\mathbb{Z}_{N}^{*}=\{x: 0 \leqslant x<N-1, \operatorname{gcd}(x, N)=1\}$ and $\varphi(N)=\left|\mathbb{Z}_{N}^{*}\right|$. Using the inclusion exclusion principle, prove that

$$
\varphi(N)=N \cdot\left(1-\frac{1}{p_{1}}\right) \cdot\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{t}}\right) .
$$

Solution.

(b) (5 points) For any $x \in \mathbb{Z}_{N}^{*}$, prove that

$$
x^{\varphi(N)}=1 \quad \bmod N
$$

Hint: Consider the subgroup generated by x and its order.
Solution.
(c) Replacing $\varphi(N)$ with $\frac{\varphi(N)}{2}$ in RSA. (15 points)

In RSA, we pick the exponent e and the decryption key d from the set $\mathbb{Z}_{\varphi(N)}^{*}$. This problem shall show that we can choose $e, d \in \mathbb{Z}_{\varphi(N) / 2}^{*}$ instead.
Let p, q be two distinct odd primes and define $N=p q$.
i. (2 points) For any $e \in \mathbb{Z}_{\varphi(N) / 2}^{*}$, prove that $x^{e}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ is a bijection. Solution.
ii. (7 points) Consider any $x \in \mathbb{Z}_{N}^{*}$. Prove that $x^{\frac{\varphi(N)}{2}}=1 \bmod p$ and $x^{\frac{\varphi(N)}{2}}=1$ $\bmod q$.
Solution.
iii. (3 points) Consider any $x \in \mathbb{Z}_{N}^{*}$. Prove that $x^{\frac{\varphi(N)}{2}}=1 \bmod N$. Solution.
iv. (3 points) Suppose e, d are integers that $e \cdot d=1 \bmod \frac{\varphi(N)}{2}$. Show that $\left(x^{e}\right)^{d}=x \bmod N$, for any $x \in \mathbb{Z}_{N}^{*}$.
Solution.
4. Understanding hardness of the Discrete Logarithm Problem. (15 points) Suppose (G, \circ) is a group of order N generated by $g \in G$. Suppose there is an algorithm $\mathcal{A}_{D L}$ that, when given input $X \in G$, it outputs $x \in\{0,1, \ldots, N-1\}$ such that $g^{x}=X$ with probability p_{X}.

Think of it this way: The algorithm $\mathcal{A}_{D L}$ solves the discrete logarithm problem; however, for different inputs $X \in G$, its success probability p_{X} may be different.
Let $p=\frac{\left(\sum_{X \in G} p_{X}\right)}{N}$ represent the average success probability of $\mathcal{A}_{D L}$ solving the discrete logarithm problem when X is chosen uniformly at random from G.
Construct a new algorithm \mathcal{B} that takes any $X \in G$ as input and outputs $x \in$ $\{0,1, \ldots, N-1\}$ (by making one call to the algorithm $\mathcal{A}_{D L}$) such that $g^{x}=X$ with probability p. This new algorithm that you construct shall solve the discrete logarithm problem for every $X \in G$ with the same probability p.
(Remark: Intuitively, this result shows that solving the discrete logarithm problem for any $X \in G$ is no harder than solving the discrete logarithm problem for a random $X \in G$.)

Solution.

5. Concatenating a random bit string before a message. (15 points)

Let $m \in\{0,1\}^{a}$ be an arbitrary message. Define the set

$$
S_{m}=\left\{(r \| m): r \in\{0,1\}^{b}\right\}
$$

Let p be an odd prime. Recall that in the RSA encryption algorithm, we encrypted a message y chosen uniformly at random from this set S_{m}.
Prove the following

$$
\underset{\substack{\& \\ y \leftarrow S_{m}}}{\operatorname{Pr}}[p \text { divides } y] \leqslant 2^{-b} \cdot\left\lceil 2^{b} / p\right\rceil
$$

(Remark: This bound is tight as well. There exists m such that equality is achieved in the probability expression above. Intuitively, this result shows that the message y will be relatively prime to p with probability (roughly) ($1-1 / p$).)

Solution.

6. Properties of x^{e} when e is relatively prime to $\varphi(N)$ (20 points)

In this problem, we will partially prove a result from the class that was left unproven. Suppose $N=p q$, where p and q are distinct prime numbers. Let e be a natural number that is relatively prime to $\varphi(N)=(p-1)(q-1)$. In the lectures, we claimed (without proof) that the function $x^{e}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ is a bijection. The following problem is key to proving this result.

Let $N=p q$, where p and q are distinct prime numbers. Let e be a natural number relatively prime to $(p-1)(q-1)$. Consider $x, y \in \mathbb{Z}_{N}^{*}$. If $x^{e}=y^{e} \bmod N$, then prove that $x=y$.

Hint: You might find the following facts useful.

- Every $\alpha \in \mathbb{Z}_{N}$ can be uniquely written as $\left(\alpha_{p}, \alpha_{q}\right)$ such that $\alpha=\alpha_{p} \bmod p$ and $\alpha=\alpha_{q} \bmod q$, using the Chinese Remainder theorem. We will write this observation succinctly as $\alpha=\left(\alpha_{p}, \alpha_{q}\right) \bmod (p, q)$.
- For $\alpha, \beta \in \mathbb{Z}_{N}$, and $e \in \mathbb{N}$ we have $\alpha^{e}=\beta \bmod N$ if and only if $\alpha_{p}^{e}=\beta_{p} \bmod p$ and $\alpha_{q}^{e}=\beta_{q} \bmod q$. We will write this succinctly as $\alpha^{e}=\left(\alpha_{p}^{e}, \alpha_{q}^{e}\right) \bmod (p, q)$.
- From the Extended GCD algorithm, if u and v are relatively prime then, there exists integers $a, b \in \mathbb{Z}$ such that $a u+b v=1$.
- Fermat's little theorem states that $x^{p-1}=1 \bmod p$ if x is a natural number that is relatively prime to the prime p.

Solution.

7. Challenging: Inverting exponentiation function. (20 points)

Fix $N=p q$, where p and q are distinct odd primes. Let e be a natural number such that $\operatorname{gcd}(e, \varphi(N))=1$. Suppose there is an adversary \mathcal{A} running in time T such that

$$
\operatorname{Pr}\left[\left[\mathcal{A}\left(\left[x^{e} \quad \bmod N\right]\right)=x\right]\right]=0.01
$$

for x chosen uniformly at random from \mathbb{Z}_{N}^{*}. Intuitively, this algorithm successfully finds the e-th root with probability 0.01 , for a random x.
For any $\varepsilon \in(0,1)$, construct an adversary $\mathcal{B}_{\varepsilon}$ (which, possibly, makes multiple calls to the adversary $\mathcal{A})$ such that

$$
\operatorname{Pr}\left[\left[\mathcal{B}_{\varepsilon}\left(\left[x^{e} \quad \bmod N\right]\right)=x\right]\right]=1-\varepsilon
$$

for every $x \in \mathbb{Z}_{N}^{*}$. The algorithm $\mathcal{B}_{\varepsilon}$ should have a running time polynomial in $T, \log N$, and $\log 1 / \varepsilon$.

Solution.

Collaborators :

